CLC-2 is a positive modulator of oligodendrocyte precursor cell differentiation and myelination

نویسندگان

  • Xiaolin Hou
  • Rui Zhang
  • Junyan Wang
  • Yunhong Li
  • Fan Li
  • Yan Zhang
  • Xiaomin Zheng
  • Ying Shen
  • Yin Wang
  • Liang Zhou
چکیده

Oligodendrocytes (OLs) are myelin-forming cells that are present within the central nervous system. Impaired oligodendrocyte precursor cell (OPC) differentiation into mature OLs is a major cause of demyelination diseases. Therefore, identifying the underlying molecular mechanisms of OPC differentiation is crucial to understand the processes of myelination and demyelination. It has been acknowledged that various extrinsic and intrinsic factors are involved in the control of OPC differentiation; however, the function of ion channels, particularly the voltage‑gated chloride channel (CLC), in OPC differentiation and myelination are not fully understood. The present study demonstrated that CLC‑2 may be a positive modulator of OPC differentiation and myelination. Western blotting results revealed that CLC‑2 was expressed in both OPCs and OLs. Furthermore, CLC‑2 currents (ICLC‑2) were recorded in both types of cells. The inhibition of ICLC‑2 by GaTx2, a blocker of CLC‑2, was demonstrated to be higher in OPCs compared with OLs, indicating that CLC‑2 may serve a role in OL differentiation. The results of western blotting and immunofluorescence staining also demonstrated that the expression levels of myelin basic protein were reduced following GaTx2 treatment, indicating that the differentiation of OPCs into OLs was inhibited following CLC‑2 inhibition. In addition, following western blot analysis, it was also demonstrated that the protein expression of the myelin proteins yin yang 1, myelin regulatory factor, Smad‑interacting protein 1 and sex‑determining region Y‑box 10 were regulated by CLC‑2 inhibition. Taken together, the results of the present study indicate that CLC‑2 may be a positive regulator of OPC differentiation and able to contribute to myelin formation and repair in myelin‑associated diseases by controlling the number and open state of CLC-2 channels.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Clemastine rescues myelination defects and promotes functional recovery in hypoxic brain injury.

Hypoxia can injure brain white matter tracts, comprised of axons and myelinating oligodendrocytes, leading to cerebral palsy in neonates and delayed post-hypoxic leukoencephalopathy (DPHL) in adults. In these conditions, white matter injury can be followed by myelin regeneration, but myelination often fails and is a significant contributor to fixed demyelinated lesions, with ensuing permanent n...

متن کامل

G protein-coupled receptor 37 is a negative regulator of oligodendrocyte differentiation and myelination.

While the formation of myelin by oligodendrocytes is critical for the function of the central nervous system, the molecular mechanism controlling oligodendrocyte differentiation remains largely unknown. Here we identify G protein-coupled receptor 37 (GPR37) as an inhibitor of late-stage oligodendrocyte differentiation and myelination. GPR37 is enriched in oligodendrocytes and its expression inc...

متن کامل

Rab35, acting through ACAP2 switching off Arf6, negatively regulates oligodendrocyte differentiation and myelination

Oligodendrocyte precursor cells differentiate to produce myelin sheaths that insulate axons to ensure fast propagation of action potentials. Many aspects of differentiation are regulated by multiple extracellular signals. However, their intracellular signalings remain elusive. We show that Rab35 and its effector, ACAP2, a GTPase-activating protein that switches off Arf6 activity, negatively reg...

متن کامل

Role of the Cellular Prion Protein in Oligodendrocyte Precursor Cell Proliferation and Differentiation in the Developing and Adult Mouse CNS

There are numerous studies describing the signaling mechanisms that mediate oligodendrocyte precursor cell (OPC) proliferation and differentiation, although the contribution of the cellular prion protein (PrP(c)) to this process remains unclear. PrP(c) is a glycosyl-phosphatidylinositol (GPI)-anchored glycoprotein involved in diverse cellular processes during the development and maturation of t...

متن کامل

Systematic Review of Pharmacological Properties of the Oligodendrocyte Lineage

Oligodendrogenesis and oligodendrocyte precursor maturation are essential processes during the course of central nervous system development, and lead to the myelination of axons. Cells of the oligodendrocyte lineage are generated in the germinal zone from migratory bipolar oligodendrocyte precursor cells (OPCs), and acquire cell surface markers as they mature and respond specifically to factors...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 17  شماره 

صفحات  -

تاریخ انتشار 2018